Abstract
Nitrate groundwater contamination is an issue of global concern that has not been satisfactorily and efficiently addressed, yet. In this study, a 2-stage, sequential bioelectrochemical system (BES) was run to perform autotrophic denitrification of synthetic groundwater. The system was run at a 75.6 mgNO3−-N L−1NCC d−1 nitrate loading rate, achieving almost complete removal of nitrate (>93%) and Total Nitrogen (TN) (>93%). After treatment in the first stage reactor values of effluent nitrate compatible with the EU and USA limits for drinking water (<11.3 and 10 mgNO3−-N L−1, respectively) were achieved. Nitrite and nitrous oxide were observed in the first stage’s effluent, and were then successfully removed in the second stage. The observed nitrate removal rate was 73.4 ± 1.3 gNO3−-N m−3NCC d−1, while the total nitrogen removal rate was 73.1 ± 1.2 gN m−3NCC d−1. Specific energy consumptions of the system were 0.80 ± 0.00 kWh m−3, 18.80 ± 0.94 kWh kgNO3−-N−1 and 18.88 ± 0.95 kWh kgN−1. Combination of two denitrifying BES in series herein described proved to be effective.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献