Using Ground Penetrating Radar (GPR) to Predict Log Moisture Content of Commercially Important Canadian Softwoods

Author:

Duchesne Isabelle1,Tong Queju2,Hans Guillaume3ORCID

Affiliation:

1. The Canadian Wood Fibre Centre, Canadian Forest Service, Natural Resources Canada, 1055 Du P.E.P.S. Street, P.O. Box 10380, Stn. Sainte-Foy, Québec, QC G1V 4C7, Canada

2. Independent Researcher, Burnaby, BC V5E 4N7, Canada

3. FPInnovations, 2665 E Mall, Vancouver, BC V6T 1Z4, Canada

Abstract

The non-destructive testing of wood fibre properties is crucial for informing forest management decisions and achieving optimal resource utilization. Moisture content (MC) is an important indicator of wood freshness and may reveal the presence of wood degradation. However, efficient methods are still needed to better monitor this property along the forest–wood value chain. The objective of the study was to develop prediction models to evaluate log MC based on the propagation of ground penetrating radar (GPR) signals. A total of 165 trees representing four species (black spruce (Picea mariana (Mill.) B.S.P.), white spruce (Picea glauca (Moench) Voss), red spruce (Picea rubens Sarg.), and balsam fir (Abies balsamea (L.) Mill.)) were harvested in two regions of the province of Quebec. GPR signals were acquired in the green (fresh) state and at three subsequent drying stages. Partial least squares regression (PLSR) and locally weighted PLSR (LWPLSR) were employed to establish relationships between GPR signals (antenna frequency: 1.6 GHz) and log properties. The models were fitted on three calibration sets containing four drying stages and different species mixes. The LWPLSR models performed better than the PLSR models for predicting log MC, with a lower root mean square error (RMSEp range: 10.8%–20.2% vs. 13.0%–20.5%) and a higher R2p (0.63–0.87 vs. 0.62–0.82). Spruce-only models performed considerably better than fir-only models while multi-species models were in-between. Despite the complex anisotropy of wood and the physics of wave propagation, the GPR technology can be successfully used to estimate log moisture content, but the GPR-based MC models should be calibrated for each specific type of wood material.

Funder

Canadian Wood Fibre Centre of Natural Resources Canada through the Sustainable Fibre Solutions Research Program

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3