Semi-Supervised FMCW Radar Hand Gesture Recognition via Pseudo-Label Consistency Learning

Author:

Shi Yuhang1,Qiao Lihong12ORCID,Shu Yucheng1,Li Baobin3,Xiao Bin1,Li Weisheng1ORCID,Gao Xinbo1

Affiliation:

1. Chongqing Key Laboratory of Computational Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, China

2. Chongqing Big Data Collaborative Innovation Center, Chongqing 401135, China

3. School of Information Science and Engineering, University of Chinese Academy of Sciences, Beijing 100871, China

Abstract

Hand gesture recognition is pivotal in facilitating human–machine interaction within the Internet of Things. Nevertheless, it encounters challenges, including labeling expenses and robustness. To tackle these issues, we propose a semi-supervised learning framework guided by pseudo-label consistency. This framework utilizes a dual-branch structure with a mean-teacher network. Within this setup, a global and locally guided self-supervised learning encoder acts as a feature extractor in a teacher–student network to efficiently extract features, maximizing data utilization to enhance feature representation. Additionally, we introduce a pseudo-label Consistency-Guided Mean-Teacher model, where simulated noise is incorporated to generate newly unlabeled samples for the teacher model before advancing to the subsequent stage. By enforcing consistency constraints between the outputs of the teacher and student models, we alleviate accuracy degradation resulting from individual differences and interference from other body parts, thereby bolstering the network’s robustness. Ultimately, the teacher model undergoes refinement through exponential moving averages to achieve stable weights. We evaluate our semi-supervised method on two publicly available hand gesture datasets and compare it with several state-of-the-art fully-supervised algorithms. The results demonstrate the robustness of our method, achieving an accuracy rate exceeding 99% across both datasets.

Funder

the National Key Research and Development Project, China

the National Natural Science Foundation of China

the National Key Research Instrument Development Program, China

Chongqing Education Commission Science and Technology Research Project, China

Chongqing Big Data Collaborative Innovation Center Funding

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3