Voxel- and Bird’s-Eye-View-Based Semantic Scene Completion for LiDAR Point Clouds

Author:

Liang Li1ORCID,Akhtar Naveed2ORCID,Vice Jordan1ORCID,Mian Ajmal1ORCID

Affiliation:

1. Department of Computer Science and Software Engineering, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia

2. School of Computing and Information Systems, The University of Melbourne, Parkville, VIC 3052, Australia

Abstract

Semantic scene completion is a crucial outdoor scene understanding task that has direct implications for technologies like autonomous driving and robotics. It compensates for unavoidable occlusions and partial measurements in LiDAR scans, which may otherwise cause catastrophic failures. Due to the inherent complexity of this task, existing methods generally rely on complex and computationally demanding scene completion models, which limits their practicality in downstream applications. Addressing this, we propose a novel integrated network that combines the strengths of 3D and 2D semantic scene completion techniques for efficient LiDAR point cloud scene completion. Our network leverages a newly devised lightweight multi-scale convolutional block (MSB) to efficiently aggregate multi-scale features, thereby improving the identification of small and distant objects. It further utilizes a layout-aware semantic block (LSB), developed to grasp the overall layout of the scene to precisely guide the reconstruction and recognition of features. Moreover, we also develop a feature fusion module (FFM) for effective interaction between the data derived from two disparate streams in our network, ensuring a robust and cohesive scene completion process. Extensive experiments with the popular SemanticKITTI dataset demonstrate that our method achieves highly competitive performance, with an mIoU of 35.7 and an IoU of 51.4. Notably, the proposed method achieves an mIoU improvement of 2.6 % compared to previous methods.

Funder

Australian Research Council Future Fellowship Award

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3