Discrimination of Degraded Pastures in the Brazilian Cerrado Using the PlanetScope SuperDove Satellite Constellation

Author:

Silva Angela Gabrielly Pires1,Galvão Lênio Soares1ORCID,Ferreira Júnior Laerte Guimarães2,Teles Nathália Monteiro2,Mesquita Vinícius Vieira2ORCID,Haddad Isadora1

Affiliation:

1. Divisão de Observação da Terra e Geoinformática (DIOTG), Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos 12245-970, SP, Brazil

2. Laboratório de Processamento de Imagens e Geoprocessamento (LAPIG), Universidade Federal de Goiás—UFG, Campus II, LAPIG, Goiânia 74001-970, GO, Brazil

Abstract

Pasture degradation poses significant economic, social, and environmental impacts in the Brazilian savanna ecosystem. Despite these impacts, effectively detecting varying intensities of agronomic and biological degradation through remote sensing remains challenging. This study explores the potential of the eight-band PlanetScope SuperDove satellite constellation to discriminate between five classes of pasture degradation: non-degraded pasture (NDP); pastures with low- (LID) and moderate-intensity degradation (MID); severe agronomic degradation (SAD); and severe biological degradation (SBD). Using a set of 259 cloud-free images acquired in 2022 across five sites located in central Brazil, the study aims to: (i) identify the most suitable period for discriminating between various degradation classes; (ii) evaluate the Random Forest (RF) classification performance of different SuperDove attributes; and (iii) compare metrics of accuracy derived from two predicted scenarios of pasture degradation: a more challenging one involving five classes (NDP, LID, MID, SAD, and SBD), and another considering only non-degraded and severely degraded pastures (NDP, SAD, and SBD). The study assessed individual and combined sets of SuperDove attributes, including band reflectance, vegetation indices, endmember fractions from spectral mixture analysis (SMA), and image texture variables from Gray-level Co-occurrence Matrix (GLCM). The results highlighted the effectiveness of the transition from the rainy to the dry season and the period towards the beginning of a new seasonal rainy cycle in October for discriminating pasture degradation. In comparison to the dry season, more favorable discrimination scenarios were observed during the rainy season. In the dry season, increased amounts of non-photosynthetic vegetation (NPV) complicate the differentiation between NDP and SBD, which is characterized by high soil exposure. Pastures exhibiting severe biological degradation showed greater sensitivity to water stress, manifesting earlier reflectance changes in the visible and near-infrared bands of SuperDove compared to other classes. Reflectance-based classification yielded higher overall accuracy (OA) than the approaches using endmember fractions, vegetation indices, or texture metrics. Classifications using combined attributes achieved an OA of 0.69 and 0.88 for the five-class and three-class scenarios, respectively. In the five-class scenario, the highest F1-scores were observed for NDP (0.61) and classes of agronomic (0.71) and biological (0.88) degradation, indicating the challenges in separating low and moderate stages of pasture degradation. An initial comparison of RF classification results for the five categories of degraded pastures, utilizing reflectance data from MultiSpectral Instrument (MSI)/Sentinel-2 (400–2500 nm) and SuperDove (400–900 nm), demonstrated an enhanced OA (0.79 versus 0.66) with Sentinel-2 data. This enhancement is likely to be attributed to the inclusion of shortwave infrared (SWIR) spectral bands in the data analysis. Our findings highlight the potential of satellite constellation data, acquired at high spatial resolution, for remote identification of pasture degradation.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3