Telescopic Network of Zhulong for Orbit Determination and Prediction of Space Objects

Author:

Lei Xiangxu123ORCID,Lao Zhendi1,Liu Lei4ORCID,Chen Junyu5ORCID,Wang Luyuan6,Jiang Shuai7,Li Min3ORCID

Affiliation:

1. School of Civil Engineering and Geomatics, Shandong University of Technology, Zibo 255000, China

2. National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, China

3. State Key Laboratory of Geodesy and Earth’s Dynamics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430077, China

4. School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China

5. Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, China

6. University of Science and Technology of China, Hefei 230026, China

7. Institute of Spacecraft System Engineering, Beijing 100094, China

Abstract

The increasing proliferation of space debris, intermittent space incidents, and the rapid emergence of massive LEO satellite constellations pose significant threats to satellites in orbit. Ground-based optical observations play a crucial role in space surveillance and space situational awareness (SSA). The Zhulong telescopic observation network stands as a pivotal resource in the realm of space object tracking and prediction. This publicly available network plays a critical role in furnishing essential data for accurately delineating and forecasting the orbit of space objects in Earth orbit. Comprising a sophisticated array of hardware components including precise telescopes, optical sensors, and image sensors, the Zhulong network synergistically collaborates to achieve unparalleled levels of precision in tracking and observing space objects. Central to the network’s efficacy is its ability to extract positional information, referred to as angular data, from consecutive images. These angular data serve as the cornerstone for precise orbit determination and prediction. In this study, the CPF (Consolidated Prediction Format) orbit serves as the reference standard against which the accuracy of the angular data is evaluated. The findings reveal that the angular data error of the Zhulong network remains consistently below 3 arcseconds, attesting to its remarkable precision. Moreover, through the accumulation of angular data over time, coupled with the utilization of numerical integration and least squares methods, the Zhulong network facilitates highly accurate orbit determination and prediction for space objects. These methodologies leverage the wealth of data collected by the network to extrapolate trajectories with unprecedented accuracy, offering invaluable insights into the behavior and movement of celestial bodies. The results presented herein underscore the immense potential of electric optic telescopes in the realm of space surveillance. By harnessing the capabilities of the Zhulong network, researchers and astronomers can gain deeper insights into the dynamics of space objects, thereby advancing our understanding of the cosmos. Ultimately, the Zhulong telescopic observation network emerges as a pioneering tool in the quest to unravel the mysteries of the universe.

Funder

National Natural Science Foundation of China

Shandong Provincial Natural Science Foundation General Project

Yunnan Fundamental Research Projects

Open fund of State Key Laboratory of Geodesy and Earth’s Dynamics

Scientific Innovation Project for Young Scientists in Shandong Provincial Universities

Publisher

MDPI AG

Reference41 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3