A Side-Lobe Denoise Process for ISAR Imaging Applications: Combined Fast Clean and Spatial Focus Technique

Author:

Xv Jia-Hua1,Zhang Xiao-Kuan1,Zong Bin-feng1,Zheng Shu-Yu2

Affiliation:

1. Air and Missile Defense College, Air Force Engineering University, Xi’an 710051, China

2. College of Electronic Science and Technology, National University of Defense Technology, Changsha 410073, China

Abstract

The presence of side-lobe noise degrades the image quality and adversely affects the performance of inverse synthetic aperture radar (ISAR) image understanding applications, such as automatic target recognition (ATR), target detection, etc. However, methods reliant on data processing, such as windowing, inevitably encounter resolution reduction, and current deep learning approaches under-appreciate the sparsity inherent in ISAR images. Taking the above analysis into consideration, a convolutional neural network-based process for ISAR side-lobe noise training is proposed in this paper. The proposed processing, based on the ISAR images sparsity characteristic analysis, undergoes enhancements in three core ideas, dataset construction, prior network design, and loss function improvements. In the realm of dataset construction, we introduce a bin-by-bin fast clean algorithm and accelerate the processing speed significantly on the basis of image complete information. Subsequently, a spatial attention layer is incorporated into the prior network designed to augment the network’s focus on the crucial regions of ISAR images. In addition, a loss function featuring a weighting factor is devised to ensure the precise recovery of the strong scattering point. Simulation experiments demonstrate that the proposed process achieves significant improvements in both quantitative and qualitative results over the classical denoise methods.

Funder

Natural Science Basis Research Plan in the Shaanxi Province of China

the Youth Talent Lifting Project of the China Association for Science and Technology

The Youth Innovation Team of Shaanxi Universities

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3