Spatially Explicit Individual Tree Height Growth Models from Bi-Temporal Aerial Laser Scanning

Author:

Salekin Serajis1ORCID,Pont David1ORCID,Dickinson Yvette1,Amarasena Sumedha1

Affiliation:

1. Scion (New Zealand Forest Research Institute Ltd.), Rotorua 3046, New Zealand

Abstract

Individual-tree-based models (IBMs) have emerged to provide finer-scale operational simulations of stand dynamics by accommodating and/or representing tree-to-tree interactions and competition. Like stand-level growth model development, IBMs need an array of detailed data from individual trees in any stand through repeated measurement. Conventionally, these data have been collected through forest mensuration by establishing permanent sample plots or temporary measurement plots. With the evolution of remote sensing technology, it is now possible to efficiently collect more detailed information reflecting the heterogeneity of the whole forest stand than before. Among many techniques, airborne laser scanning (ALS) has proved to be reliable and has been reported to have potential to provide unparallel input data for growth models. This study utilized repeated ALS data to develop a model to project the annualized individual tree height increment (ΔHT) in a conifer plantation by considering spatially explicit competition through a mixed-effects modelling approach. The ALS data acquisition showed statistical and biological consistency over time in terms of both response and important explanatory variables, with correlation coefficients ranging from 0.65 to 0.80. The height increment model had high precision (RMSE = 0.92) and minimal bias (0.03), respectively, for model fitting. Overall, the model showed high integrity with the current biological understanding of individual tree growth in a monospecific Pinus radiata plantation. The approach used in this study provided a robust model of annualized individual tree height growth, suggesting such an approach to modelling will be useful for future forest management.

Funder

Scion’s Strategic Science Investment Fund and the Forest Growers Levy Trust

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3