Beyond the Maximum Storage Capacity Limit in Hopfield Recurrent Neural Networks

Author:

Gosti GiorgioORCID,Folli Viola,Leonetti Marco,Ruocco GiancarloORCID

Abstract

In a neural network, an autapse is a particular kind of synapse that links a neuron onto itself. Autapses are almost always not allowed neither in artificial nor in biological neural networks. Moreover, redundant or similar stored states tend to interact destructively. This paper shows how autapses together with stable state redundancy can improve the storage capacity of a recurrent neural network. Recent research shows how, in an N-node Hopfield neural network with autapses, the number of stored patterns (P) is not limited to the well known bound 0.14 N , as it is for networks without autapses. More precisely, it describes how, as the number of stored patterns increases well over the 0.14 N threshold, for P much greater than N, the retrieval error asymptotically approaches a value below the unit. Consequently, the reduction of retrieval errors allows a number of stored memories, which largely exceeds what was previously considered possible. Unfortunately, soon after, new results showed that, in the thermodynamic limit, given a network with autapses in this high-storage regime, the basin of attraction of the stored memories shrinks to a single state. This means that, for each stable state associated with a stored memory, even a single bit error in the initial pattern would lead the system to a stationary state associated with a different memory state. This thus limits the potential use of this kind of Hopfield network as an associative memory. This paper presents a strategy to overcome this limitation by improving the error correcting characteristics of the Hopfield neural network. The proposed strategy allows us to form what we call an absorbing-neighborhood of state surrounding each stored memory. An absorbing-neighborhood is a set defined by a Hamming distance surrounding a network state, which is an absorbing because, in the long-time limit, states inside it are absorbed by stable states in the set. We show that this strategy allows the network to store an exponential number of memory patterns, each surrounded with an absorbing-neighborhood with an exponentially growing size.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3