Electrochemical and Colorimetric Nanosensors for Detection of Heavy Metal Ions: A Review

Author:

Fakayode Sayo O.1,Walgama Charuksha2ORCID,Fernand Narcisse Vivian E.3,Grant Cidya3

Affiliation:

1. Department of Chemistry, Physics and Astronomy, Georgia College and State University, Milledgeville, GA 31061, USA

2. Department of Physical and Applied Sciences, University of Houston-Clear Lake, Houston, TX 77058, USA

3. Department of Chemistry, Forensic Science and Oceanography, Palm Beach Atlantic University, West Palm Beach, FL 33401, USA

Abstract

Human exposure to acute and chronic levels of heavy metal ions are linked with various health issues, including reduced children’s intelligence quotients, developmental challenges, cancers, hypertension, immune system compromises, cytotoxicity, oxidative cellular damage, and neurological disorders, among other health challenges. The potential environmental HMI contaminations, the biomagnification of heavy metal ions along food chains, and the associated risk factors of heavy metal ions on public health safety are a global concern of top priority. Hence, developing low-cost analytical protocols capable of rapid, selective, sensitive, and accurate detection of heavy metal ions in environmental samples and consumable products is of global public health interest. Conventional flame atomic absorption spectroscopy, graphite furnace atomic absorption spectroscopy, atomic emission spectroscopy, inductively coupled plasma–optical emission spectroscopy, inductively coupled plasma–mass spectroscopy, X-ray diffractometry, and X-ray fluorescence have been well-developed for HMIs and trace element analysis with excellent but varying degrees of sensitivity, selectivity, and accuracy. In addition to high instrumental running and maintenance costs and specialized personnel training, these instruments are not portable, limiting their practicality for on-demand, in situ, field study, or point-of-need HMI detection. Increases in the use of electrochemical and colorimetric techniques for heavy metal ion detections arise because of portable instrumentation, high sensitivity and selectivity, cost-effectiveness, small size requirements, rapidity, and visual detection of colorimetric nanosensors that facilitate on-demand, in situ, and field heavy metal ion detections. This review highlights the new approach to low-cost, rapid, selective, sensitive, and accurate detection of heavy metal ions in ecosystems (soil, water, air) and consumable products. Specifically, the review highlights low-cost, portable, and recent advances in smartphone-operated screen-printed electrodes (SPEs), plastic chip SPES, and carbon fiber paper-based nanosensors for environmental heavy metal ion detection. In addition, the review highlights recent advances in colorimetric nanosensors for heavy metal ion detection requirements. The review provides the advantages of electrochemical and optical nanosensors over the conventional methods of HMI analyses. The review further provides in-depth coverage of the detection of arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), manganese (Mn), nickel (Ni), lead (Pb), and zinc (Zn) ions in the ecosystem, with emphasis on environmental and biological samples. In addition, the review discusses the advantages and challenges of the current electrochemical and colorimetric nanosensors protocol for heavy metal ion detection. It provides insight into the future directions in the use of the electrochemical and colorimetric nanosensors protocol for heavy metal ion detection.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference149 articles.

1. Review of organic and conventional agricultural products: Heavy metal availability, accumulation and safety;Abeywickrama;Int. J. Food Sci. Nutr.,2019

2. Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: A review;Vareda;J. Environ. Manag.,2019

3. A review of ion and metal pollutants in urban green water infrastructures;Kabir;Sci. Total Environ.,2014

4. Heavy metal pollution in the environment and their toxicological effects on humans;Briffa;Heliyon,2020

5. The speciation and physico-chemical forms of metals in surface waters and sediments;Namiesnik;Chem. Speciat. Bioavailab.,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3