Angle-Only Filtering of a Maneuvering Target in 3D

Author:

Mallick MahendraORCID,Tian XiaoqingORCID,Zhu Yun,Morelande Mark

Abstract

We consider the state estimation of a maneuvering target in 3D using bearing and elevation measurements from a passive infrared search and track (IRST) sensor. Since the range is not observable, the sensor must perform a maneuver to observe the state of the target. The target moves with a nearly constant turn (NCT) in the XY-plane and nearly constant velocity (NCV) along the Z-axis. The natural choice for the NCT motion is to allow perturbations in speed and angular rate in the stochastic differential equation, as has been pointed out previously for a 2D scenario using range and bearing measurements. The NCT motion in the XY-plane cannot be discretized exactly, whereas the NCV motion along the Z-axis is discretized exactly. We discretize the continuous-time NCT model using the first and second-order Taylor approximations to obtain discrete-time NCT models, and we consider the polar velocity and Cartesian velocity-based states for the NCT model. The dynamic and measurement models are nonlinear in the target state. We use the cubature Kalman filter to estimate the target state. Accuracies of the first and second-order Taylor approximations are compared using the polar velocity-based and Cartesian velocity-based models using Monte Carlo simulations. Numerical results for realistic scenarios considered show that the second-order Taylor approximation provides the best accuracy using the polar velocity or Cartesian velocity-based models.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference54 articles.

1. Kalman Filter Behavior in Bearings-Only Tracking Applications

2. Three-Dimensional Bearings-Only Target Tracking: Comparison of Few Sigma Point Kalman Filters;Asfia,2021

3. Design and Analysis of Modern Tracking Systems;Blackman,1999

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3