Information Retrieval from Photoplethysmographic Sensors: A Comprehensive Comparison of Practical Interpolation and Breath-Extraction Techniques at Different Sampling Rates

Author:

Reali PierluigiORCID,Lolatto Riccardo,Coelli StefaniaORCID,Tartaglia Gabriella,Bianchi Anna Maria

Abstract

The increasingly widespread diffusion of wearable devices makes possible the continuous monitoring of vital signs, such as heart rate (HR), heart rate variability (HRV), and breath signal. However, these devices usually do not record the “gold-standard” signals, namely the electrocardiography (ECG) and respiratory activity, but a single photoplethysmographic (PPG) signal, which can be exploited to estimate HR and respiratory activity. In addition, these devices employ low sampling rates to limit power consumption. Hence, proper methods should be adopted to compensate for the resulting increased discretization error, while diverse breath-extraction algorithms may be differently sensitive to PPG sampling rate. Here, we assessed the efficacy of parabola interpolation, cubic-spline, and linear regression methods to improve the accuracy of the inter-beat intervals (IBIs) extracted from PPG sampled at decreasing rates from 64 to 8 Hz. PPG-derived IBIs and HRV indices were compared with those extracted from a standard ECG. In addition, breath signals extracted from PPG using three different techniques were compared with the gold-standard signal from a thoracic belt. Signals were recorded from eight healthy volunteers during an experimental protocol comprising sitting and standing postures and a controlled respiration task. Parabola and cubic-spline interpolation significantly increased IBIs accuracy at 32, 16, and 8 Hz sampling rates. Concerning breath signal extraction, the method holding higher accuracy was based on PPG bandpass filtering. Our results support the efficacy of parabola and spline interpolations to improve the accuracy of the IBIs obtained from low-sampling rate PPG signals, and also indicate a robust method for breath signal extraction.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3