Operation-Driven Power Analysis of Discrete Process in a Cyber-Physical System Based on a Modularized Factory

Author:

Um JumyungORCID,Park Taebyeong,Cho Hae-WonORCID,Shin Seung-JunORCID

Abstract

As the legislative pressure to reduce energy consumption is increasing, data analysis of power consumption is critical in the production planning of manufacturing facilities. In previous studies, a machine, conducting a single continuous operation, has been mainly observed for power estimation. However, a modularized production line, which conducts complex discrete operations, is more like the actual factory system than an identical simple machine. During the information collection of such production lines, it is important to interpret and distinguish mixed signals from multiple machines to ensure that there is no reduction in the information quality due to noise and signal fusion and discrete events. A data pipeline from data collection from different sources to pre-processing, data conversion, synchronization, and deep learning classification to estimate the total power use of the future process plan is proposed herein. The pipeline also establishes an auto-labeled data set of individual operations that contributes to building power estimation models without manual data pre-processing. The proposed system is applied to a modular factory connected with machine controllers using standardized protocols individually and linked to a centralized power monitoring system. Specifically, a robot arm cell was investigated to evaluate the pipeline with the result of the power profile synchronized with the robot program.

Funder

Korea Institute for Advancement of Technology

Korea Evaluation Institute of Industrial Technology

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3