Effects of Altitude, Plant Communities, and Canopies on the Thermal Comfort, Negative Air Ions, and Airborne Particles of Mountain Forests in Summer

Author:

Wang Rui,Chen Qi,Wang Dexiang

Abstract

Forest bathing is considered an economical, feasible, and sustainable way to solve human sub-health problems caused by urban environmental degradation and to promote physical and mental health. Mountain forests are ideal for providing forest baths because of their large area and ecological environment. The regulatory mechanism of a mountain forest plant community in a microenvironment conducive to forest bathing is the theoretical basis for promoting physical and mental health through forest bathing in mountain forests. Based on field investigations and measurements, differences in the daily universal thermal climate index (UTCI), negative air ion (NAI), and airborne particulate matter (PM2.5 and PM10) levels in nine elevation gradients, six plant community types, and six plant community canopy parameter gradients were quantitatively analyzed. In addition, the correlations between these variables and various canopy parameters were further established. The results showed the following: (1) Altitude had a significant influence on the daily UTCI, NAI, PM2.5, and PM10 levels in the summer. The daily UTCI, NAI, PM2.5, and PM10 levels gradually decreased with the increase in altitude. For every 100 m increase in altitude, the daily UTCI decreased by 0.62 °C, the daily NAI concentration decreased by 108 ions/cm3, and the daily PM2.5 and PM10 concentrations decreased by 0.60 and 3.45 µg/m3, respectively. (2) There were significant differences in the daily UTCI, NAI, PM2.5, and PM10 levels among different plant communities in the summer. Among the six plant communities, the Quercus variabilis forest (QVF) had the lowest daily UTCI and the best thermal comfort evaluation. The QVF and Pinus tabuliformis forest (PTF) had a higher daily NAI concentration and lower daily PM2.5 and PM10 concentrations. (3) The characteristics of the plant community canopy, canopy density (CD), canopy porosity (CP), leaf area index (LAI), and sky view factor (SVF), had significant effects on the daily UTCI and NAI concentration, but had no significant effects on the daily PM2.5 and PM10 concentrations in the summer. The plant community with higher CD and LAI, but lower CP and SVF, showed a higher daily UTCI and a higher daily NAI concentration. In conclusion, the QVF and PTF plant communities with higher CD and LAI but lower CP and SVF at lower elevations are more suitable for forest bathing in the summer in mountainous forests at lower altitudes. The results of this study provide an economical, feasible, and sustainable guide for the location of forest bathing activities and urban greening planning to promote people’s physical and mental health.

Funder

the National 12th Five-Year Scientific and Technological Support Plan

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3