Carbon Footprinting of Universities Worldwide Part II: First Quantification of Complete Embodied Impacts of Two Campuses in Germany and Singapore

Author:

Helmers Eckard,Chang Chia Chien,Dauwels JustinORCID

Abstract

Universities, as innovation drivers in science and technology worldwide, should attempt to become carbon-neutral institutions and should lead this transformation. Many universities have picked up the challenge and quantified their carbon footprints; however, up-to-date quantification is limited to use-phase emissions. So far, data on embodied impacts of university campus infrastructure are missing, which prevents us from evaluating their life cycle costs. In this paper, we quantify the embodied impacts of two university campuses of very different sizes and climate zones: the Umwelt-Campus Birkenfeld (UCB), Germany, and the Nanyang Technological University (NTU), Singapore. We also quantify the effects of switching to full renewable energy supply on the carbon footprint of a university campus based on the example of UCB. The embodied impacts amount to 13.7 (UCB) and 26.2 (NTU) kg CO2e/m2•y, respectively, equivalent to 59.2% (UCB), and 29.8% (NTU), respectively, of the building lifecycle impacts. As a consequence, embodied impacts can be dominating; thus, they should be quantified and reported. When adding additional use-phase impacts caused by the universities on top of the building lifecycle impacts (e.g., mobility impacts), both institutions happen to exhibit very similar emissions with 124.5–126.3 kg CO2e/m2•y despite their different sizes, structures, and locations. Embodied impacts comprise 11.0–20.8% of the total impacts at the two universities. In conclusion, efficient reduction in university carbon footprints requires a holistic approach, considering all impacts caused on and by a campus including upstream effects.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference105 articles.

1. Climate Change 2021—The Physical Science Basis Summary for Policymakers. Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Changehttps://www.ipcc.ch/report/sixth-assessment-report-working-group-i/

2. That’s How Fast the Carbon Clock Is Ticking. Mercator Research Institute on Global Commons and Climate Changehttps://www.mcc-berlin.net/en/research/co2-budget.html

3. Ten simple rules to make your computing more environmentally sustainable

4. Developing non-residential building stock archetypes for LCI—a German case study of office and administration buildings

5. The European Green Deal — More Than Climate Neutrality

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3