Temperature Distribution and Equipment Layout in a Deep Chamber: A Case Study of a Coal Mine Substation

Author:

Hu Kaiwen,Zheng Jian,Wu HaiORCID,Jia Qian

Abstract

With the gradual depletion of shallow resources, the process of resource exploitation is being transferred to greater depths. The temperature of the surrounding rock increases gradually in the process of deep mining, and the temperature of the underground substation chambers often exceeds the normal working temperature in summer. In this paper, the equipment layout and ventilation conditions of the deep substation chamber of the Jiangxi Qujiang Mining Company were selected as the research subjects, and numerical simulation software was used to study the temperature distribution within the chamber under different conditions by changing the combinations of the wind velocity and air temperature of the inlet air of the chamber. The study showed that, under the conditions of the current equipment layout and air door size, the equipment temperature was prone to being too high in the summer. Therefore, the layout of the equipment was optimized based on the simulation results. The transformer equipment was changed from the original serial mode to the juxtaposed mode, and the size of the air door was increased, which effectively reduced the disturbance of the air flow and the length of the air flow path in the chamber. This meant that the high temperature area of the chamber was at the end of the chamber, which efficiently reduced the area of the high temperature zone and ensured that the equipment was in a lower temperature environment. This method can be used as a reference for temperature distribution, layout, and temperature control measures within buildings.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference29 articles.

1. Study on Cooled Zone Radius and Temperature Distribution Law of Surrounding Rock;Chen;Coal Technol.,2014

2. Study on temperature field distribution law of surrounding rock in active thermal insulated roadway of high temperature mine;Song;Coal Sci. Technol.,2017

3. Study on the influence of roadway cross-section shape on heat dissipation of surrounding rock;Zhang;J. Saf. Environ.,2021

4. Formulas of Radius and Temperature for Heat-regulating Circle Based on Steady Heat Conduction;Du;Min. Saf. Environ. Prot.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3