Characteristics of Biochars Derived from the Pyrolysis and Co-Pyrolysis of Rubberwood Sawdust and Sewage Sludge for Further Applications

Author:

Ali LiaqatORCID,Palamanit ArkomORCID,Techato KuaananORCID,Ullah AsadORCID,Chowdhury Md. Shahariar,Phoungthong KhampheORCID

Abstract

This study investigated the characteristics of biochars derived from the pyrolysis of rubberwood sawdust (RWS) and sewage sludge (SS) and their co-pyrolysis at mixing ratios of 50:50 and 75:25. Biochars were produced at 550 °C through slow pyrolysis in a moving bed reactor and then characterized. Results showed that the rubberwood sawdust biochar (RWSB) had high carbon content (86.70 wt%) and low oxygen content (7.89 wt%). By contrast, the sewage sludge biochar (SSB) had high ash content (65.61 wt%) and low carbon content (24.27 wt%). The blending of RWS with SS at the mentioned ratios helped enhance the gross and element contents of the biochar samples. The elemental analysis of the biochars was also reported in the form of atomic ratios (H/C and O/C). The functional groups of biochars were observed by Fourier-transform infrared spectroscopy (FTIR). X-ray fluorescence spectroscopy (XRF) revealed that the biochar from SS contained a high content of inorganic elements, such as Si, Ca, Fe, K, Mg, P, and Zn. The pH of the biochars ranged from 8.41 to 10.02. Brunauer, Emmett, and Teller (BET) and scanning electron microscopy (SEM) showed that RWSB had a lower surface area and larger pore diameter than the other biochars. The water holding capacity (WHC) and water releasing ability (WRA) of the biochars were in the range of 1.01–3.08 mL/g and 1.19–52.42 wt%, respectively. These results will be the guideline for further application and study of biochar from RWS, SS, and blended samples.

Funder

Prince of Songkla University and Ministry of Higher Education Science Research and Innovation under the reinventing university project

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3