Efficient Dynamic Reconfigurable CNN Accelerator for Edge Intelligence Computing on FPGA

Author:

Shi Kaisheng1ORCID,Wang Mingwei1,Tan Xin1,Li Qianghua2,Lei Tao13ORCID

Affiliation:

1. College of Electronic Information and Artificial Intelligence, Shaanxi University of Science and Technology, Xi’an 710021, China

2. College of Electrical and Control Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China

3. Shaanxi Joint Laboratory of Artificial Intelligence, Shaanxi University of Science and Technology, Xi’an 710021, China

Abstract

This paper proposes an efficient dynamic reconfigurable CNN accelerator (EDRCA) for FPGAs to tackle the issues of limited hardware resources and low energy efficiency in the deployment of convolutional neural networks on embedded edge computing devices. First, a configuration layer sequence optimization method is proposed to minimize the configuration time overhead and improve performance. Second, accelerator templates for dynamic regions are designed to create a unified high-speed interface and enhance operational performance. The dynamic reconfigurable technology is applied on the Xilinx KV260 FPGA platform to design the EDRCA accelerator, resolving the hardware resource constraints in traditional accelerator design. The YOLOV2-TINY object detection network is used to test the EDRCA accelerator on the Xilinx KV260 platform using floating point data. Results at 250 MHz show a computing performance of 75.1929 GOPS, peak power consumption of 5.25 W, and power efficiency of 13.6219 GOPS/W, indicating the potential of the EDRCA accelerator for edge intelligence computing.

Funder

Shaanxi Provincial Department of Science and Technology, including the Key R&D Project

Shaanxi Provincial Department of Education Service Local Special Program Project

Xi’an City Science and Technology Plan Project

Xianyang City Science and Technology Bureau Unveiling hanging major special project

Xianyang City Science and Technology Bureau plan project

Xi’an City Weiyang District Science and Technology Plan Project

Publisher

MDPI AG

Subject

Information Systems

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. FPGA-based control system for real-time driving of UHD Micro-LED display with color calibration;Integration;2024-09

2. FPGA-Based Real-Time Object Detection and Classification System Using YOLO for Edge Computing;IEEE Access;2024

3. Advanced Acceleration and Implementation of Convolutional Neural Networks on FPGAs;2023 IEEE International Conference on High Performance Computing & Communications, Data Science & Systems, Smart City & Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys);2023-12-17

4. Design of an experimental setup for the implementation of CNNs in APSoCs;2023 IEEE Colombian Caribbean Conference (C3);2023-11-22

5. Heterogeneous Acceleration System for Scene Text Recognition;Proceedings of the 4th International Conference on Artificial Intelligence and Computer Engineering;2023-11-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3