Surface Modification of Commingled Flax/PP and Flax/PLA Fibres by Silane or Atmospheric Argon Plasma Exposure to Improve Fibre–Matrix Adhesion in Composites

Author:

Pornwannachai Wiwat,Horrocks A. RichardORCID,Kandola Baljinder K.ORCID

Abstract

Challenges faced by natural fibre-reinforced composites include poor compatibility between hydrophilic fibres such as flax and hydrophobic polymeric matrices such as polypropylene (PP) or poly(lactic acid) (PLA), and their inherent flammability. The former promotes weak interfacial adhesion between fibre and matrix, which may be further compromised by the addition of a flame retardant. This paper investigates the effect that the added flame retardant (FR), guanylurea methylphosphonate (GUP) and selected surface treatments of commingled flax and either PP or PLA fabrics have on the fibre/matrix interfacial cohesive forces in derived composites. Surface treatments included silanisation and atmospheric plasma flame exposure undertaken both individually and in sequence. 1-, 2- and 8-layered composite laminates were examined for their tensile, peeling and flexural properties, respectively, all of which yield measures of fibre-matrix cohesion. For FR-treated Flax/PP composites, maximum improvement was obtained with the combination of silane (using vinyltriethoxysilane) and plasma (150 W) treatments, with the highest peeling strength and flexural properties. However, for FR-treated Flax/PLA composites, maximum improvement in both properties occurred following 150 W plasma exposure only. The improvements in physical properties were matched by increased fibre-matrix adhesion as shown in SEM images of fractured laminates in which fibre-pullout had been eliminated.

Funder

Innovate UK

Publisher

MDPI AG

Subject

Mechanics of Materials,Biomaterials,Civil and Structural Engineering,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3