A Centrifugal Pump Fault Diagnosis Framework Based on Supervised Contrastive Learning

Author:

Ahmad SajjadORCID,Ahmad ZahoorORCID,Kim Jong-MyonORCID

Abstract

A novel intelligent centrifugal pump (CP) fault diagnosis method is proposed in this paper. The method is based on the contrast in vibration data obtained from a centrifugal pump (CP) under several operating conditions. The vibration signals data obtained from a CP are non-stationary because of the impulses caused by different faults; thus, traditional time domain and frequency domain analyses such as fast Fourier transform and Walsh transform are not the best option to pre-process the non-stationary signals. First, to visualize the fault-related impulses in vibration data, we computed the kurtogram images of time series vibration sequences. To extract the discriminant features related to faults from the kurtogram images, we used a deep learning tool convolutional encoder (CE) with a supervised contrastive loss. The supervised contrastive loss pulls together samples belonging to the same class, while pushing apart samples belonging to a different class. The convolutional encoder was pretrained on the kurtograms with the supervised contrastive loss to infer the contrasting features belonging to different CP data classes. After pretraining with the supervised contrastive loss, the learned representations of the convolutional encoder were kept as obtained, and a linear classifier was trained above the frozen convolutional encoder, which completed the fault identification. The proposed model was validated with data collected from a real industrial testbed, yielding a high classification accuracy of 99.1% and an error of less than 1%. Furthermore, to prove the proposed model robust, it was validated on CP data with 3.0 and 3.5 bar inlet pressure.

Funder

Korea Technology and Information Promotion Agency

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3