Bioremediation of Polycyclic Aromatic Hydrocarbons from Industry Contaminated Soil Using Indigenous Bacillus spp.

Author:

Mandree Prisha,Masika Wendy,Naicker Justin,Moonsamy Ghaneshree,Ramchuran Santosh,Lalloo Rajesh

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are reportedly toxic, ubiquitous and organic compounds that can persist in the environment and are released largely due to the incomplete combustion of fossil fuel. There is a range of microorganisms that are capable of degrading low molecular weight PAHs, such as naphthalene; however, fewer were reported to degrade higher molecular weight PAHs. Bacillus spp. has shown to be effective in neutralizing polluted streams containing hydrocarbons. Following the growing regulatory requirement to meet the PAH specification upon disposal of contaminated soil, the following study aimed to identify potential Bacillus strains that could effectively remediate low and high molecular weight PAHs from the soil. Six potential hydrocarbon-degrading strains were formulated into two prototypes and tested for the ability to remove PAHs from industry-contaminated soil. Following the dosing of each respective soil system with prototypes 1 and 2, the samples were analyzed for PAH concentration over 11 weeks against an un-augmented control system. After 11 weeks, the control system indicated the presence of naphthalene (3.11 µg·kg−1), phenanthrene (24.47 µg·kg−1), fluoranthene (17.80 µg·kg−1) and pyrene (28.92 µg·kg−1), which illustrated the recalcitrant nature of aromatic hydrocarbons. The soil system dosed with prototype 2 was capable of completely degrading (100%) naphthalene, phenanthrene and pyrene over the experimental period. However, the accumulation of PAHs, namely phenanthrene, fluoranthene and pyrene, were observed using prototype 1. The results showed that prototype 2, consisting of a combination of Bacillus cereus and Bacillus subtilis strains, was more effective in the biodegradation of PAHs and intermediate products. Furthermore, the bio-augmented system dosed with prototype 2 showed an improvement in the overall degradation (10–50%) of PAHs, naphthalene, phenanthrene and pyrene, over the un-augmented control system. The following study demonstrates the potential of using Bacillus spp. in a bioremediation solution for sites contaminated with PAHs and informs the use of biological additives for large-scale environmental remediation.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3