(Sub)structure Development in Gradually Swaged Electroconductive Bars

Author:

Kopeček Jaromír1ORCID,Bajtošová Lucia2,Veřtát Petr1ORCID,Šimek Daniel1

Affiliation:

1. FZU—Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 18200 Prague, Czech Republic

2. Department of Physics of Materials, Charles University in Prague, Ke Karlovu 5, 12116 Prague, Czech Republic

Abstract

Copper generally exhibits high electrical conductivity but has poor mechanical properties. Although alloying can improve the latter characteristic, it usually leads to a decrease in electrical conductivity. To address this issue, a promising approach is to enhance the performance of copper while maintaining high electrical conductivity through optimized deformation processing, which refines the structure and increases mechanical properties. This paper focuses on assessing the effects of rotary swaging, a form of deformation processing, on microstructures and substructures of electroconductive copper bars. This analysis is complemented by experimental measurements of electrical conductivity. The results demonstrate that gradual swaging, i.e., applying different swaging ratios, influences the structure-forming processes and consequently affects the electrical conductivity. The increased electrical conductivity was found to be associated with the elongation of the grains in the direction of the electron movement.

Funder

the Czech Science Foundation

MEYS CR

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3