Preparation of Hydrophobic Octadecylphosphonic Acid-Coated Magnetite Nanoparticles for the Demulsification of n-Hexane-in-Water Nanoemulsions

Author:

Liang Jiling1ORCID,Han Tingting1,Wang Wenwu1,Zhang Lunqiu1,Zhang Yan1

Affiliation:

1. School of Civil Engineering, Liaoning Petrochemical University, Fushun 113001, China

Abstract

To design more environmentally friendly, economical, and efficient demulsifiers for oily wastewater treatment, hydrophobic octadecylphosphonic acid (ODPA)-modified Fe3O4 nanoparticles (referred to as Fe3O4@ODPA) were prepared by condensation of hydroxyl groups between ODPA and Fe3O4 nanoparticles using the co-precipitation method. The prepared magnetite nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscope (SEM), Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric/differential thermogravimetric (TG/DTG) analysis. The water contact angles (θW) of Fe3O4@ODPA nanoparticles were more than 120°, indicating hydrophobic nature, and the diameter of the obtained spherical-shaped magnetite nanoparticles was 12–15 nm. The ODPA coating amount (AO) (coating weight per gram Fe3O4) and specific surface area (SO) of Fe3O4@ODPA were 0.124–0.144 g·g−1 and 78.65–91.01 m2·g−1, respectively. To evaluate the demulsification ability, stability, and reusability, the magnetite nanoparticles were used to demulsify an n-hexane-in-water nanoemulsion. The effects of the magnetite nanoparticle dosage (CS), pH value of nanoemulsion, and NaCl or CaCl2 electrolytes on the demulsification efficiency (RO) were investigated. The RO of Fe3O4@ODPA samples was found to be higher than that of bare Fe3O4 samples (S0, ST, and SN) under all CS values. With the increase in CS, the RO of Fe3O4@ODPA samples initially increased and then approached equilibrium value at Cs = 80.0 g·L−1. A maximum RO of ~93% was achieved at CS = 100.0 g·L−1 for the Fe3O4@ODPA sample S2. The pH and two electrolytes had a minor effect on RO. The Fe3O4@ODPA nanoparticles maintained high RO even after being reused for demulsification 11 times. This indicates that the hydrophobic Fe3O4@ODPA samples can be used as an effective magnetite demulsifer for oil-in-water nanoemulsions.

Funder

Linqing Xinqite Bearing Co.

Liaoning Northwest Water Supply Co.

Talent Scientific Research Fund of Liaoning Petrochemical University

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3