Electrochemical Response of 3D-Printed Free-Standing Reduced Graphene Oxide Electrode for Sodium Ion Batteries Using a Three-Electrode Glass Cell

Author:

Ramírez Cristina1,Osendi María Isabel1ORCID,Moyano Juan José12,Mosa Jadra1ORCID,Aparicio Mario1ORCID

Affiliation:

1. Institute of Ceramics and Glass (ICV), Consejo Superior de Investigaciones Científicas, CSIC, Kelsen 5, Cantoblanco, 28049 Madrid, Spain

2. Universidad Politécnica de Madrid, 28040 Madrid, Spain

Abstract

Graphene and its derivatives have been widely used to develop novel materials with applications in energy storage. Among them, reduced graphene oxide has shown great potential for more efficient storage of Na ions and is a current target in the design of electrodes for environmentally friendly Na ion batteries. The search for more sustainable and versatile manufacturing processes also motivates research into additive manufacturing electrodes. Here, the electrochemical responses of porous 3D-printed free-standing log-type structures fabricated using direct ink writing (DIW) with a graphene oxide (GO) gel ink are investigated after thermal reduction in a three-electrode cell configuration. The structures delivered capacities in the range of 50–80 mAh g−1 and showed high stability for more than 100 cycles. The reaction with the electrolyte/solvent system, which caused an initial capacity drop, was evidenced by the nucleation of various Na carbonates and Na2O. The incorporation of Na into the filaments of the structure was verified with transmission electron microscopy and Raman spectroscopy. This work is a proof of concept that structured reduced GO electrodes for Na ion batteries can be achieved from a simple, aqueous GO ink through DIW and that there is scope for improving their performance and capacity.

Funder

Ministry of Science and Innovation of Spain

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3