Experimental and Numerical Analysis of the Hydrodynamics around a Vertical Cylinder in Waves

Author:

Corvaro Sara,Crivellini Andrea,Marini Francesco,Cimarelli Andrea,Capitanelli Loris,Mancinelli Alessandro

Abstract

The present study provides an extensive analysis on the hydrodynamics induced by a vertical slender pile under wave action. The authors carried out the study both experimentally and numerically, thus enabling a deep understanding of the flow physics. The experiments took place at a wave flume of the Università Politecnica delle Marche. Two different experimental campaigns were performed: In the former one, a mobile bed model was realized with the aims to study both the scour process and the hydrodynamics around the cylinder; in the latter one, the seabed was rigid in order to make undisturbed optical measurements, providing a deeper analysis of the hydrodynamics. The numerical investigation was made by performing a direct numerical simulation. A second order numerical discretization, both in time and in space, was used to solve the Navier–Stokes equations while a volume of fluid (VOF) approach was adopted for tracking the free surface. The comparison between experimental and numerical results is provided in terms of velocity, pressure distributions around the cylinder, and total force on it. The analysis of the pressure gradient was used to evaluate the generation and evolution of vortices around the cylinder. Finally, the relation between scour and bed shear stresses due to the structure of the vortex pattern around the pile was assessed. It is worth noting that the physical understanding of this last analysis was enabled by the combined use of experimental data on scour and numerical data on the flow pattern.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3