Vibration Performance of a Flow Energy Converter behind Two Side-by-Side Cylinders

Author:

Rasani Mohammad Rasidi,Moria HazimORCID,Beer Michael,Ariffin Ahmad Kamal

Abstract

Flow-induced vibrations of a flexible cantilever plate, placed in various positions behind two side-by-side cylinders, were computationally investigated to determine optimal location for wake-excited energy harvesters. In the present study, the cylinders of equal diameter D were fixed at center-to-center gap ratio of T / D = 1 . 7 and immersed in sub-critical flow of Reynold number R e D = 10 , 000 . A three-dimensional Navier–Stokes flow solver in an Arbitrary Lagrangian–Eulerian (ALE) description was closely coupled to a non-linear finite element structural solver that was used to model the dynamics of a composite piezoelectric plate. The cantilever plate was fixed at several positions between 0 . 5 < x / D < 1 . 5 and - 0 . 85 < y / D < 0 . 85 measured from the center gap between cylinders, and their flow-induced oscillations were compiled and analyzed. The results indicate that flexible plates located at the centerline between the cylinder pairs experience the lowest mean amplitude of oscillation. Maximum overall amplitude in oscillation is predicted when flexible plates are located in the intermediate off-center region downstream of both cylinders. Present findings indicate potential to further maximize wake-induced energy harvesting plates by exploiting their favorable positioning in the wake region behind two side-by-side cylinders.

Funder

Horizon 2020

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Re‐circulation of Schmallenberg virus, Germany, 2019;Transboundary and Emerging Diseases;2020-05-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3