Affiliation:
1. Energy System Group, Korea Institute of Industrial Technology, Busan 46938, Republic of Korea
2. Department of Materials Science and Engineering, Pukyong National University, Busan 48513, Republic of Korea
3. Department of Materials Science and Engineering, Dong-A University, Busan 49315, Republic of Korea
Abstract
High-manganese steel (high-Mn) is valuable for its excellent mechanical properties in cryogenic environments, making it essential to understand its deformation behavior at extremely low temperatures. The deformation behavior of high-Mn steels at extremely low temperatures depends on the stacking fault energy (SFE) that can lead to the formation of deformation twins or transform to ε-martensite or α′-martensite as the temperature decreases. In this study, submerged arc welding (SAW) was applied to fabricate thick pipes for cryogenic industry applications, but it may cause problems such as an uneven distribution of manganese (Mn) and a large weldment. To address these issues, post-weld heat treatment (PWHT) is performed to achieve a homogeneous microstructure, enhance mechanical properties, and reduce residual stress. It was found that the difference in Mn content between the dendrite and interdendritic regions was reduced after PWHT, and the SFE was calculated. At cryogenic temperatures, the SFE decreased below 20 mJ/m2, indicating the martensitic transformation region. Furthermore, an examination of the deformation behavior of welded high-Mn steels was conducted. This study revealed that the tensile deformed, as-welded specimens exhibited ε and α′-martensite transformations at cryogenic temperatures. However, the heat-treated specimens did not undergo α′-martensite transformations. Moreover, regardless of whether the specimens were subjected to Charpy impact deformation before or after heat treatment, ε and α′-martensite transformations did not occur.
Funder
R&D Program of the “Materials/Parts Technology Development Program”