Chloride Penetration of Surface-Coated Concrete: Review and Outlook

Author:

Liao Jing1ORCID,Wang Yuchi2,Sun Xiping2,Wang Yuanzhan1

Affiliation:

1. Simulation State Key Laboratory of Hydraulic Engineering Intelligent Construction and Operation, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin 300072, China

2. Tianjin Research Institute for Water Transport Engineering, M.O.T., 2618 Xingang 2nd Road, Binhai New District, Tianjin 300000, China

Abstract

Concrete coatings show significant promise in shielding concrete substrates from corrosion by effectively resisting harmful ions and moisture. Thanks to their practicality, high efficiency, and cost-effectiveness, coatings are considered a potent technique for enhancing the chloride resistance of reinforced concrete structures. Over recent decades, extensive research has concentrated on employing coatings to bolster concrete’s ability to withstand chloride penetration. This paper provides a holistic review of the current studies on chloride infiltration in concrete surfaces treated with coating materials, primarily focused on chloride resistance improvement efficiency and chloride transport modeling. Firstly, by comparing the functions of assorted coatings, four inherent protection mechanisms are summarized and elaborated thoroughly. Afterwards, the chloride resistance improvement efficiency of assorted coatings reported in current studies are reviewed and compared in great detail, with a specific focus on inorganic, organic, and organic–inorganic composite coatings. Furthermore, the theoretical research about methodologies for chloride transport behavior prediction is summarized. Finally, this paper outlines the potential research directions in this field and the theoretical, technical, and practical application challenges. This review not only identifies critical areas necessitating further investigation and problem-solving in this domain but also aids in selecting appropriate coating materials and refining corrosion management strategies.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Fundamental Research Funds for the Central Research Institutes

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3