N6-Methyladenosine Positively Regulates Coxsackievirus B3 Replication

Author:

Zhao Hainian1,Gao Zhiyun1,Sun Jiawen1,Qiao Hongxiu12,Zhao Yan1,Cui Yan1ORCID,Zhao Baoxin13,Wang Weijie12,Chiu Sandra14,Chuai Xia13ORCID

Affiliation:

1. Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang 050017, China

2. Experimental Center for Teaching, Hebei Medical University, Shijiazhuang 050017, China

3. State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega Science, Chinese Academy of Sciences, Wuhan 430207, China

4. Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China

Abstract

Enteroviruses such as coxsackievirus B3 are identified as a common cause of viral myocarditis, but the potential mechanism of its replication and pathogenesis are largely unknown. The genomes of a variety of viruses contain N6-methyladenosine (m6A), which plays important roles in virus replication. Here, by using the online bioinformatics tools SRAMP and indirect immunofluorescence assay (IFA), we predict that the CVB3 genome contains m6A sites and found that CVB3 infection could alter the expression and cellular localization of m6A-related proteins. Moreover, we found that 3-deazaadenosine (3-DAA), an m6A modification inhibitor, significantly decreased CVB3 replication. We also observed that the m6A methyltransferases methyltransferase-like protein 3 (METTL3) and METTL14 play positive roles in CVB3 replication, whereas m6A demethylases fat mass and obesity-associated protein (FTO) or AlkB homolog 5 (ALKBH5) have opposite effects. Knockdown of the m6A binding proteins YTH domain family protein 1 (YTHDF1), YTHDF2 and YTHDF3 strikingly decreased CVB3 replication. Finally, the m6A site mutation in the CVB3 genome decreased the replication of CVB3 compared with that in the CVB3 wild-type (WT) strain. Taken together, our results demonstrated that CVB3 could exploit m6A modification to promote viral replication, which provides new insights into the mechanism of the interaction between CVB3 and the host.

Funder

S&T Program of Hebei

the Natural Science Foundation of Hebei Province, China

the Science and Technology Project of Hebei Education Department

the Hebei Medical Science Research Project

the Chinese Medicine Research Program of Hebei Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3