Research and Application of Multi-Mode Joint Monitoring System for Shaft Wall Deformation

Author:

Fang Xinqiu,Zhang Fan,Shi Zongshen,Liang Minfu,Song Yang

Abstract

The mine shaft is an important channel linking the underground with the surface, undertaking important functions such as personnel and material transportation and ventilation. Thus the shaft, known as the throat of the mine, is the production hub of the whole mine. Since 1980, damage to coal mine shafts has occurred in many areas of China, which has seriously impacted the safety of mine production. Therefore, real-time monitoring of the shaft wall condition is necessary. However, the traditional monitoring method cannot achieve long-term, continuous and stable monitoring of the shaft wall due to the harsh production environment downhole. Hence, a multi-mode joint sensing system for shaft wall deformation and damage is proposed, which is mainly based on FBG sensing and supplemented by vibrating-string sensing. The principle of FBG sensing is that when the external environment such as temperature, pressure and strain changes, the characteristics of light transmission in the FBG such as wavelength, phase and amplitude will also change accordingly. Using the linear relationship between the strain and the wavelength shift of the FBG, the strain of the measured structure is obtained by calculation. Firstly, this paper introduces the basic situations of the mine and analyzes the causes shaft damage. Then the vertical and circumferential theoretical values at different shaft depths are derived in combination with the corresponding force characteristics. Moreover, a four-layer strain transfer structure model of the shaft consisting of the fiber, the protective layer, the bonding layer and the borehole wall is established, which leads to the derivation of the strain transfer relational expression for the surface-mounted FBG sensing on the shaft wall. The strain-sensing transfer law and the factors influencing the strain-sensing transfer of the surface-mounted FBG on the shaft wall are analyzed. The order of key factors influencing the strain-sensing transfer is obtained by numerical simulation: the radius of the protective layer, the length of the FBG paste, and the elastic modulus of the adhesive layer. The packaging parameters with the best strain-sensing transfer of the surface-mounted FBG on the shaft wall are determined. A total of six horizontal level monitoring stations are arranged in a coal mine auxiliary shaft. Through the comprehensive analysis of the sensing data of the two sensors, the results show that the average shaft wall strain–transfer efficiency measured by the FBG sensor reaches 94.02%. The relative average error with the theoretical derivation of shaft wall transfer efficiency (98.6%) is 4.65%, which verifies the strain transfer effect of the surface-mounted FBG applied to the shaft wall. The shaft wall’s deformation monitoring system with FBG sensing as the main and vibrating-string sensing as the supplement is important to realize the early warning of well-wall deformation and further research of the shaft wall rupture mechanism.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference25 articles.

1. Current status and development direction of intelligent mining technology for deep coal resources;Li;Coal Sci. Technol.,2021

2. Speeding up intelligent construction of coal mine and promoting high-quality development of coal industry;Wang;China Coal,2021

3. Energy geostructure engineering: promote carbon peak and neutrality, empower green cities

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3