Method and Device Based on Multiscan for Measuring the Geometric Parameters of Objects

Author:

Alies Michael Yurievich,Shelkovnikov Yuriy Konstantinovich,Sága MilanORCID,Vaško MilanORCID,Kuric Ivan,Shelkovnikov Evgeny Yurievich,Korshunov Aleksandr Ivanovich,Meteleva Anastasia Alekseevna

Abstract

The article deals with the issues of improving the accuracy of measurements of the geometric parameters of objects by optoelectronic systems, based on a television multiscan. A mathematical model of a multiscan with scanistor activation is developed, expressions for its integral output current and video signal are obtained, and the mechanism of their formation is investigated. An expression for the video signal is obtained that reflects the dual nature of the discrete–continuous multiscan structure: the video signal can have a discrete (pulse) or analog (continuous) form, depending on the step voltage between the photodiode cells of the multiscan. A Vernier discrete–analog method for measuring the parameters of the light zone on a multiscan is proposed, in which in order to increase the accuracy of the measurements, the location of the video pulse is determined relative to the neighboring reference pulses of a rigid geometric raster due to the slope of the discrete structure of the multiscan. It is established that the Vernier method enables one to make precision measurements of the coordinates, dimensions, and movements of the light zones by an overlay on a video raster of reference pulses from cells—a uniform sequence of Vernier pulses with a recurrence interval, followed by determining the number of the Vernier pulse that coincides with the raster pulse. An optoelectronic device based on a discrete–continuous multiscan, implemented on the basis of the proposed Vernier method of measuring the coordinates of the light zones, which has a high sensitivity to movement, is characteristic of continuous structures, and has increased stability and linearity of the coordinate characteristics typical for discrete structures, is developed.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3