Experimental Investigation of the Blanked Surface of C5191 Phosphor Bronze Sheet over a Wide Range of Blanking Speeds

Author:

Wang Lei,Hu Daochun,Chen MingheORCID,Wang Hongjun

Abstract

The influence of blanking speed on the blanked surface quality of C5191 bronze phosphorus sheets, with a thickness of 0.12 mm, was systematically studied to demonstrate the mechanism under high speed blanking. The morphology and microstructure of the blanked edge were observed by using a variety of techniques, including optical microscopy (OM), scanning electron microscope (SEM), electron backscatter diffraction (EBSD), and transmission electron microscope (TEM). The results revealed that the local temperature and microhardness of the shear zone increased with the increase in blanking speed. Moreover, the quality of blanked edge significantly improved with the increase in blanking speed due to the combined influence of strain rate hardening and thermal softening. In addition, the blanked edge grains were elongated along the blanking direction and formed dislocation cells and sub-grains in some areas. The blanked edge is dominated by {000} <100> cubic texture at higher blanking speeds, and {112} <111> texture at lower blanking speeds. When punched at an ultra-high speed of 3000 strokes per minute (SPM 3000), the local area of the blanked edge exhibited distinct microstructural features, including low dislocation density, nanocrystals with high-angle grain boundaries, and significant differences in grain orientation. Additionally, the selected area electron diffraction (SAED) pattern exhibited a discontinuous ring-like structure, indicating the occurrence of adiabatic shearing with dynamic recrystallization.

Funder

Natural Science Foundation of Zhejiang Province

Publisher

MDPI AG

Subject

General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3