Experimental Study on Optimization of Phosphogypsum Suspension Decomposition Conditions under Double Catalysis

Author:

Xu Pinjing,Li Hui,Chen Yanxin

Abstract

Phosphogypsum (PG) is not only a solid waste discharged from the phosphate fertilizer industry, but also a valuable resource. After high-temperature heat treatment, it can be decomposed into SO2 and CaO; the former can be used to produce sulfuric acid, and the latter can be used as building materials. In this paper, the catalytic thermal decomposition conditions of phosphogypsum were optimized, and the effects of the reaction temperature, reaction atmosphere, reaction time and carbon powder content on the decomposition of phosphogypsum were studied. The research shows that the synergistic effect of carbon powder and CO reducing atmosphere can effectively reduce the decomposition temperature of phosphogypsum. According to the results of the orthogonal test under simulated suspended laboratory conditions, the factors affecting the decomposition rate of phosphogypsum are temperature, time, atmosphere and carbon powder content in turn, and the factors affecting the desulfurization rate are time, temperature, atmosphere and carbon powder content in turn. Under laboratory conditions, the highest decomposition rate and desulfurization rate of phosphogypsum are 97.73% and 97.2%, and the corresponding reaction conditions are as follows: calcination temperature is 1180 °C, calcination time is 15 min, carbon powder content is 4%, and CO concentration is 6%. The results of thermal analysis of phosphogypsum at different temperature rising rates show that the higher the temperature rising rate, the higher the initial temperature of decomposition reaction and the temperature of maximum thermal decomposition rate, but the increase in the temperature rising rate will not reduce the decomposition rate of phosphogypsum.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3