A Channel Rendezvous Algorithm for Multi-Unmanned Aerial Vehicle Networks Based on Average Consensus

Author:

Wang Yunlu1,Zhang Bo1,Qin Shan1,Peng Jinlin1

Affiliation:

1. National Defense Innovation Institute, Fengtai District, No. 53 East Street Courtyard, Beijing 100071, China

Abstract

Realizing the distributed adaptive network construction of multi-UAV networks is an urgent challenge, as they lack a reliable common control channel and can only maintain a limited sensing range in crowded electromagnetic environments. Multi-unmanned aerial vehicle (UAV) networks are gaining popularity in many fields. In order to address these issues, this paper proposes a multi-UAV network channel rendezvous algorithm based on average consistency. The goal of the algorithm is to adjust the communication channels of each UAV to converge on the same channel, since the communication link of the multi-UAV network is broken due to interference. The proposed memory-based average consistency (MAC) algorithm utilizes the network adjacency matrix as prior information. Furthermore, for the case where the adjacency matrix is unknown, this paper also proposes the Multi-Radio Average Consensus (MRAC) algorithm, which achieves a beneficial trade-off between rendezvous performance and hardware cost. Simulation results demonstrate that the proposed MAC and MRAC algorithms provide superior network convergence time and scalability in networks of different densities. Finally, a hardware simulation platform based on a multi-UAV network was designed using a software-defined radio platform, and experimental simulations were performed to prove the effectiveness of the MAC algorithm in a real environment.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Broadband Wireless Networks Based on Tethered High-Altitude Unmanned Platforms;Communications in Computer and Information Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3