Abstract
Quantitative assessment of the frequency and magnitude of drought events plays an important role in preventing drought disasters and ensuring water security in river basins. In this paper, we modified a parsimonious two-parameter monthly water balance (TPMWB) model by incorporating the generalized proportionality hypothesis with precipitation and potential evapotranspiration as input variables. The modified TPMWB was then used to simulate the monthly hydrological processes of 30 sub-basins in the Han River basin. It is shown that the water balance model can satisfactorily simulate the hydrological regimes in the selected sub-basins. We derived the probability distribution functions of monthly runoff using the principle of maximum entropy to calculate the Standardized Runoff Index (SRI), and assessed the historical hydrological drought conditions. By investigating the correlation between four major drought characteristics (i.e., drought duration, drought severity, drought intensity, and drought inter-arrival time) and four dimensionless parameters representing the climatic and underlying properties of the basin, a conclusion can be drawn that the formation and development of hydrological drought in the Han River basin is mainly controlled by watershed storage factors, and the influence of climatic factors is also significant. The proposed approach provides a potential alternative for regional drought early warning and under changing environmental conditions.
Funder
Visiting Researcher Fund Program of State Key Laboratory of Water Resources and Hydropower Engineering Science
National Key Research and Development Program of China
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry