The Chemical Composition, Fermentation End-Product of Silage, and Aerobic Stability of Cassava Pulp Fermented with Lactobacillus casei TH14 and Additives

Author:

Pongsub Sunisa,Suntara Chanon,Khota WaroonORCID,Boontiam WaewareeORCID,Cherdthong AnusornORCID

Abstract

This study evaluated the effects of cassava pulp fermented with Lactobacillus casei TH14, urea, and molasses on its chemical composition, the fermentation end-product of silage, and aerobic stability. A 2 × 2 × 2 factorial arrangement with a randomized complete block design was employed. The first factor: level of L. casei TH14 [L; 0 and 105 cfu/kg fresh matter (FM)], the second factor: level of molasses (M; 0 and 4% DM), the third factor: level of urea (U; 0 and 4% DM), and the number of days of fermentation (7, 14, and 21 days) were evaluated using a statistical block. There were interactions among CSP fermented with different additives on DM content (p < 0.05). The control group (CON) and CSP fermented with L, L×M, and L×U had lower DM contents than U, U×M, and L×U×M. The crude protein of CSP was increased by interaction of L×U and U×M additives (p < 0.05 and p < 0.01, respectively). Interaction effects between L and U and NDF content were detected (p < 0.05). The L×U combination resulted in a significantly lower NDF than the other groups. The interaction between L×U×M had no effect on the change in the CSP fermentation process (p > 0.05). The combination of U×M caused a poorer pH than other groups (p < 0.01). The ammonia-N content was higher than others, when CSP was fermented with L×U (p < 0.01) or U×M (p < 0.05), respectively. The lactic acid levels in fermented CSP were higher (p < 0.01) than in other groups through the L. casei. The interaction between L×U×M had an influence on lactic acid bacteria (LAB) (p < 0.01) and aerobic bacteria (p < 0.01). The highest LAB population (p < 0.01) at 106 cfu/g FM was found in CSP fermented with L. casei and molasses. In conclusion, the current study shows that CSP treated with L×U×M resulted in good preservation by recovering DM, a low number of aerobic bacteria, and greater LAB than other treatments, with the exception of the L×U×M addition. A 21-day fermentation period is advised because it produces products with greater levels of crude protein, lactic acid, acetic acid, and propionic acid.

Funder

Fundamental Fund of Khon Kaen University

Research Fund for Supporting Lecturers to Admit High Potential Students to Study and Research

Publisher

MDPI AG

Subject

General Veterinary

Reference72 articles.

1. Fathima, A.A., Sanitha, M., Tripathi, L., and Muiruri, S. (2022). Cassava (Manihot esculenta) dual use for food and bioenergy: A review. Food Energy Secur., e380.

2. FAO (2018). Food Outlook: Biannual Report on Global Food Markets-November 2018. Mod. Sci.-Mod. Věda, 15, 5–13.

3. FAOSTAT (2022, September 08). FAO Statistics, Food and Agriculture Organization of the United Nations. Available online: http://www.fao.org/faostat/en/.

4. Cassava, a 21st century staple crop: How can Nigeria harness its enormous trade potentials;Acta Sci. Agric.,2019

5. Implementing circular economy concept by converting cassava pulp and wastewater to biogas for sustainable production in starch industry;Sustain. Environ. Res.,2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3