Affiliation:
1. School of Agriculture, Middle Tennessee State University, 314 W. Thompson Ln., Murfreesboro, TN 37129, USA
2. Department of Animal Science, Michigan State University, 474 S. Shaw Ln., East Lansing, MI 48824, USA
Abstract
The effects of gait and diameter have been studied independently, but rarely together in equine circular exercise studies. This study aimed to determine the impact of diameter (10-m or 15-m) at various gaits (walk, trot, and canter) on stride frequency or forelimb stance duration. Nine mature horses were outfitted with Tekscan™ Hoof Sensors on their forelimbs during circular and straight-line exercise at various gaits on a clay and sand arena surface. Statistical analysis was performed in SAS 9.4 with fixed effects of exercise type, recording, leg, and breed (PROC GLIMMIX, p < 0.05 significance). At walk (p < 0.0001) and trot (p < 0.001), stride frequency was lower during circular exercise. Stride frequency was similar between forelimbs at all gaits. At walk (p < 0.001) and canter (p = 0.01), stance duration was greatest during 10-m circle exercise. At walk (p = 0.0007), trot (p < 0.001), and canter (p < 0.0001), the inside forelimb had longer stance duration than the outside forelimb. Differences between forelimb stance durations may support asymmetrical travel while horses exercise on a circle at the walk, trot, and canter. These results demonstrate diameter and gait are important factors when evaluating forelimb kinematics during circular exercise.
Funder
Michigan Alliance for Animal Agriculture
American Quarter Horse Foundation
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献