Virtual Sensor: Simultaneous State and Input Estimation for Nonlinear Interconnected Ground Vehicle System Dynamics

Author:

Sentouh Chouki12ORCID,Fouka Majda1ORCID,Popieul Jean-Christophe12

Affiliation:

1. Université Polytechnique Hauts-de-France, LAMIH, CNRS, UMR 8201, F-59313 Valenciennes, France

2. INSA Hauts-de-France, F-59313 Valenciennes, France

Abstract

This paper proposes a new observer approach used to simultaneously estimate both vehicle lateral and longitudinal nonlinear dynamics, as well as their unknown inputs. Based on cascade observers, this robust virtual sensor is able to more precisely estimate not only the vehicle state but also human driver external inputs and road attributes, including acceleration and brake pedal forces, steering torque, and road curvature. To overcome the observability and the interconnection issues related to the vehicle dynamics coupling characteristics, tire effort nonlinearities, and the tire–ground contact behavior during braking and acceleration, the linear-parameter-varying (LPV) interconnected unknown inputs observer (UIO) framework was used. This interconnection scheme of the proposed observer allows us to reduce the level of numerical complexity and conservatism. To deal with the nonlinearities related to the unmeasurable real-time variation in the vehicle longitudinal speed and tire slip velocities in front and rear wheels, the Takagi–Sugeno (T-S) fuzzy form was undertaken for the observer design. The input-to-state stability (ISS) of the estimation errors was exploited using Lyapunov stability arguments to allow for more relaxation and an additional robustness guarantee with respect to the disturbance term of unmeasurable nonlinearities. For the design of the LPV interconnected UIO, sufficient conditions of the ISS property were formulated as an optimization problem in terms of linear matrix inequalities (LMIs), which can be effectively solved with numerical solvers. Extensive experiments were carried out under various driving test scenarios, both in interactive simulations performed with the well-known Sherpa dynamic driving simulator, and then using the LAMIH Twingo vehicle prototype, in order to highlight the effectiveness and the validity of the proposed observer design.

Funder

French National Research Agency

French Regional Delegation for Research and Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3