Abstract
An ultra-thin compact flexible CPW-fed slot monopole antenna suitable for the Internet of Things (IoT) applications was achieved as a result of exploring the use of Zirconia-based ENrG’s Thin E-Strate® for the antenna’s design. The electromagnetic characterization of the novel material at the frequency range of interest was analyzed. A comparison was made concerning the required dimensions and the simulation results regarding impedance matching and radiation properties, for three different dielectric substrates: Novel flexible ceramic (ENrG’s Thin E-Strate), rigid Arlon 25N, and flexible Polypropylene (PP). Two different metallization techniques—electrotextile-based and inkjet printing—were used in the fabrication of prototypes based on ENrG’s Thin E-Strate. Return losses measured results for the fabricated prototypes with both procedures was compared, as well as with simulation. The best prototype on the ENrG’s Thin E-Strate was compared with one on Arlon 25N, in terms of radiation properties in an anechoic chamber, and conclusions were drawn.
Funder
Gobierno del Principado de Asturias and European Union (FEDER)
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献