Identification of Fatty Acid Desaturase 6 in Golden Pompano Trachinotus Ovatus (Linnaeus 1758) and Its Regulation by the PPARαb Transcription Factor

Author:

Zhu Ke-ChengORCID,Song Ling,Guo Hua-Yang,Guo Liang,Zhang Nan,Liu Bao-Suo,Jiang Shi-Gui,Zhang Dian-Chang

Abstract

Fatty acid desaturases are rate-limiting enzymes in long-chain polyunsaturated fatty acid biosynthesis. The transcription factor peroxisome proliferator-activated receptor alpha b (PPARαb) regulates lipid metabolism in mammals, however, the mechanism whereby PPARαb regulates fatty acid desaturases is largely unknown in fish. In this study, we report the full length cDNA sequence of Trachinotus ovatus fatty acid desaturase, which encodes a 380 amino acid polypeptide, possessing three characteristic histidine domains. Phylogenetic and gene exon/intron structure analyses showed typical phylogeny: the T. ovatus fatty acid desaturase contained a highly conserved exon/intron architecture. Moreover, functional characterization by heterologous expression in yeast indicated that T. ovatus desaturase was a fatty acid desaturase, with Δ4/Δ5/Δ8 Fad activity. Promoter activity assays indicated that ToFads6 desaturase transcription was positively regulated by PPARαb. Similarly, PPARαb RNA interference decreased ToPPARαb and ToFads6 expression at the mRNA and protein levels in a time-dependent manner. Mutation analyses showed that the M2 binding site of PPARαb was functionally important for protein binding, and transcriptional activity of the ToFads6 promoter was significantly decreased after targeted mutation of M2. Electrophoretic mobile shift assays confirmed that PPARαb interacted with the binding site of the ToFads6 promoter region, to regulate ToFads6 transcription. In summary, PPARαb played a vital role in ToFads6 regulation and may promote the biosynthesis of long-chain polyunsaturated fatty acids by regulating ToFads6 expression.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3