In Situ Monitoring of Bacteria under Antimicrobial Stress Using 31P Solid-State NMR

Author:

Overall Sarah A.,Zhu Shiying,Hanssen Eric,Separovic FrancesORCID,Sani Marc-AntoineORCID

Abstract

In-cell NMR offers great insight into the characterization of the effect of toxins and antimicrobial peptides on intact cells. However, the complexity of intact live cells remains a significant challenge for the analysis of the effect these agents have on different cellular components. Here we show that 31P solid-state NMR can be used to quantitatively characterize the dynamic behaviour of DNA within intact live bacteria. Lipids were also identified and monitored, although 31P dynamic filtering methods indicated a range of dynamic states for phospholipid headgroups. We demonstrate the usefulness of this methodology for monitoring the activity of the antibiotic ampicillin and the antimicrobial peptide (AMP) maculatin 1.1 (Mac1.1) against Gram-negative bacteria. Perturbations in the dynamic behaviour of DNA were observed in treated cells, which indicated additional mechanisms of action for the AMP Mac1.1 not previously reported. This work highlights the value of 31P in-cell solid-state NMR as a tool for assessing the antimicrobial activity of antibiotics and AMPs in bacterial cells.

Funder

Australian Research Council

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3