Author:
Chen Chao-Cheng,Li Jia-Je,Guo Nai-Hua,Chang Deng-Yuan,Wang Chung-Yih,Chen Jenn-Tzong,Lin Wuu-Jyh,Chi Kwan-Hwa,Lee Yi-Jang,Liu Ren-Shyan,Chen Chuan-Lin,Wang Hsin-Ell
Abstract
Colorectal cancer is one of the major causes of cancer-related death in Taiwan and worldwide. Patients with peritoneal metastasis from colorectal cancer have reduced overall survival and poor prognosis. Hybrid protein-inorganic nanoparticle systems have displayed multifunctional applications in solid cancer theranostics. In this study, a gold nanocore-encapsulated human serum albumin nanoparticle (Au@HSANP), which is a hybrid protein-inorganic nanoparticle, and its radioactive surrogate 111In-labeled Au@HSANP (111In-Au@HSANP), were developed and their biological behaviors were investigated in a tumor/ascites mouse model. 111In-Au@HSANP was injected either intravenously (iv) or intraperitoneally (ip) in CT-26 tumor/ascites-bearing mice. After ip injection, a remarkable and sustained radioactivity retention in the abdomen was noticed, based on microSPECT images. After iv injection, however, most of the radioactivity was accumulated in the mononuclear phagocyte system. The results of biodistribution indicated that ip administration was significantly more effective in increasing intraperitoneal concentration and tumor accumulation than iv administration. The ratios of area under the curve (AUC) of the ascites and tumors in the ip-injected group to those in the iv-injected group was 93 and 20, respectively. This study demonstrated that the ip injection route would be a better approach than iv injections for applying gold-albumin nanoparticle in peritoneal metastasis treatment.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献