Protective Effects and Mechanisms of N-Phenethyl Caffeamide from UVA-Induced Skin Damage in Human Epidermal Keratinocytes through Nrf2/HO-1 Regulation

Author:

Chu Yin,Wu Po-Yuan,Chen Chien-Wen,Lyu Jia-Ling,Liu Yi-Jung,Wen Kuo-Ching,Lin Chien-Yih,Kuo Yueh-HsiungORCID,Chiang Hsiu-MeiORCID

Abstract

The skin provides an effective barrier against physical, chemical, and microbial invasion; however, overexposure to ultraviolet (UV) radiation causes excessive cellular oxidative stress, which leads to skin damage, DNA damage, mutations, and skin cancer. This study investigated the protective effects of N-phenethyl caffeamide (K36) from UVA damage on human epidermal keratinocytes. We found that K36 reduced UVA-induced intracellular reactive oxygen species (ROS) production and induced the expression of the intrinsic antioxidant enzyme heme oxygenase-1 (HO-1) by increasing the translocation of nuclear factor erythroid 2–related factor 2 (Nrf2). K36 could inhibit the phosphorylation of extracellular-signal-regulated kinase (ERK) and c-Jun N-terminal kinases (JNK) and reduce UVA-induced matrix metalloproteinase (MMP)-1 and MMP-2 overexpression; it could also elevate the expression of tissue inhibitors of metalloproteinases (TIMP). In addition, K36 ameliorated 8-hydroxy-2′-deoxyguanosine (8-OHdG) induced by UVA irradiation. Furthermore, K36 could downregulate the expression of inducible nitric oxide synthase (iNOS) and interleukin-6 (IL-6) and the subsequent production of nitric oxide (NO) and prostaglandin E2 (PGE2). Based on our findings, K36 possessed potent antioxidant, anti-inflammatory, antiphotodamage, and even antiphotocarcinogenesis activities. Thus, K36 has the potential to be used to multifunctional skin care products and drugs.

Funder

China Medical University

the Ministry of Science and Technology

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3