Patterns of Drought Response of 38 WRKY Transcription Factors of Zanthoxylum bungeanum Maxim.

Author:

Fei Xitong,Hou Lixiu,Shi Jingwei,Yang Tuxi,Liu Yulin,Wei Anzhi

Abstract

The WRKY family of transcription factors (TFs) includes a number of transcription-specific groupings that play important roles in plant growth and development and in plant responses to various stresses. To screen for WRKY transcription factors associated with drought stress in Zanthoxylum bungeanum, a total of 38 ZbWRKY were identified and these were then classified and identified with Arabidopsis WRKY. Using bioinformatics analyses based on the structural characteristics of the conservative domain, 38 WRKY transcription factors were identified and categorized into three groups: Groups I, II, and III. Of these, Group II can be divided into four subgroups: subgroups IIb, IIc, IId, and IIe. No ZbWRKY members of subgroup IIa were found in the sequencing data. In addition, 38 ZbWRKY were identified by real-time PCR to determine the behavior of this family of genes under drought stress. Twelve ZbWRKY transcription factors were found to be significantly upregulated under drought stress and these were identified by relative quantification. As predicted by the STRING website, the results show that the WRKYs are involved in four signaling pathways—the jasmonic acid (JA), the salicylic acid (SA), the mitogen-activated protein kinase (MAPK), and the ethylene signaling pathways. ZbWRKY33 is the most intense transcription factor in response to drought stress. We predict that WRKY33 binds directly to the ethylene synthesis precursor gene ACS6, to promote ethylene synthesis. Ethylene then binds to the ethylene activator release signal to activate a series of downstream genes for cold stress and osmotic responses. The roles of ZbWRKY transcription factors in drought stress rely on a regulatory network center on the JA signaling pathway.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3