Lgr5 Does Not Vary Throughout the Menstrual Cycle in Endometriotic Human Eutopic Endometrium

Author:

Vallvé-Juanico Júlia,Barón Cristian,Suárez-Salvador Elena,Castellví JosepORCID,Ballesteros Agustín,Gil-Moreno Antonio,Santamaria Xavier

Abstract

Endometriosis is characterized by the abnormal presence of endometrium outside of the uterus, resulting in pelvic pain and infertility. The leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5) has been postulated to be a marker of stem cells in the endometrium. However, LGR5+ cells have a macrophage-like phenotype in this tissue, so it is unclear what role LGR5+ cells actually play in the endometrium. Macrophages serve an important function in the endometrium to maintain fertility, while LGR5+ cells generally have a role in tumor progression and are involved in invasion in some cancers. We sought to determine whether LGR5+ cells vary across the menstrual cycle in women with endometriosis and whether there are implications for LGR5 in the aggressiveness of endometriosis and reproductive outcomes. We performed immunofluorescence, flow cytometry, and primary culture in vitro experiments on eutopic and ectopic endometrium from healthy and endometriosis patients and observed that neither LGR5+ cells nor LGR5 expression varied throughout the cycle. Interestingly, we observed that LGR5+ cell percentage overexpressing CD163 (anti-inflammatory marker) was higher in healthy endometrium, suggesting that in endometriosis, endometrium presents a more pro-inflammatory phenotype that likely leads to poor obstetric outcomes. We also observed higher levels of LGR5+ cells in ectopic lesions compared to eutopic endometrium and specifically in deep infiltrating endometriosis, indicating that LGR5 could be involved in progression and aggressiveness of the disease.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3