A Framework for Cybersecurity Requirements Management in the Automotive Domain

Author:

Luo Feng1,Jiang Yifan1ORCID,Wang Jiajia1,Li Zhihao1,Zhang Xiaoxian2

Affiliation:

1. School of Automotive Studies, Tongji University, Shanghai 201804, China

2. iSOFT Infrastructure Software Co., Ltd., Shanghai 200125, China

Abstract

The rapid development of intelligent connected vehicles has increased the attack surface of vehicles and made the complexity of vehicle systems unprecedented. Original equipment manufacturers (OEMs) need to accurately represent and identify threats and match corresponding security requirements. Meanwhile, the fast iteration cycle of modern vehicles requires development engineers to quickly obtain cybersecurity requirements for new features in their developed systems in order to develop system code that meets cybersecurity requirements. However, existing threat identification and cybersecurity requirement methods in the automotive domain cannot accurately describe and identify threats for a new feature while also quickly matching appropriate cybersecurity requirements. This article proposes a cybersecurity requirements management system (CRMS) framework to assist OEM security experts in conducting comprehensive automated threat analysis and risk assessment and to help development engineers identify security requirements prior to software development. The proposed CRMS framework enables development engineers to quickly model their systems using the UML-based (i.e., capable of describing systems using UML) Eclipse Modeling Framework and security experts to integrate their security experience into a threat library and security requirement library expressed in Alloy formal language. In order to ensure accurate matching between the two, a middleware communication framework called the component channel messaging and interface (CCMI) framework, specifically designed for the automotive domain, is proposed. The CCMI communication framework enables the fast model of development engineers to match with the formal model of security experts for threat and security requirement matching, achieving accurate and automated threat and risk identification and security requirement matching. To validate our work, we conducted experiments on the proposed framework and compared the results with the HEAVENS approach. The results showed that the proposed framework is superior in terms of threat detection rates and coverage rates of security requirements. Moreover, it also saves analysis time for large and complex systems, and the cost-saving effect becomes more pronounced with increasing system complexity.

Funder

Shanghai Pudong New Area Science and Technology Development Fund Industry-University-Research Special Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3