Fuzzy Logic in Aircraft Onboard Systems Reliability Evaluation—A New Approach

Author:

Żyluk Andrzej,Kuźma KonradORCID,Grzesik NorbertORCID,Zieja MariuszORCID,Tomaszewska JustynaORCID

Abstract

This paper is a continuation of research into the possibility of using fuzzy logic to assess the reliability of a selected airborne system. The research objectives include an analysis of statistical data, a reliability analysis in the classical approach, a reliability analysis in the fuzzy set theory approach, and a comparison of the obtained results. The system selected for the investigation was the aircraft gun system. In the first step, after analysing the statistical (operational) data, reliability was assessed using a classical probabilistic model in which, on the basis of the Weibull distribution fitted to the operational data, the basic reliability characteristics were determined, including the reliability function for the selected aircraft system. The second reliability analysis, in a fuzzy set theory approach, was conducted using a Mamdani Type Fuzzy Logic Controller developed in the Matlab software with the Fuzzy Logic Toolbox package. The controller was designed on the basis of expert knowledge obtained by a survey. Based on the input signals in the form of equipment operation time (number of flying hours), number of shots performed (shots), and the state of equipment corrosion (corrosion), the controller determines the reliability of air armament. The final step was to compare the results obtained from two methods: classical probabilistic model and fuzzy logic. The authors have proved that the reliability model using fuzzy logic can be used to assess the reliability of aircraft airborne systems.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference25 articles.

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3