Abstract
In this paper, a new radar signal modulated with a hybrid of the frequency shift keying (FSK) and the phase shift keying (PSK) signal—i.e., the FSK-PSK signal—is studied. Different phase encoding sequences are used to modulate the sub-pulses to obtain lower sidelobe levels and ensure signal orthogonality. In addition, to counter intra-pulse slice repeater jamming of specific length generated by the enemy jammer, an orthogonal waveform made of sub-pulses of equal length based on the FSK-PSK modulation scheme is designed. The simulation results show that the optimized discrete phase encoding sequence can significantly enhance the orthogonality of the sub-pulse in the FSK-PSK signal and effectively suppress the slice repeater jamming. Two algorithms are proposed: (1) the low sidelobe waveform optimization algorithm based on ADMM (LSW-ADMM); and (2) the anti-slice-repeater-jamming algorithm based on ADMM (ASRJ-ADMM). Both algorithms exhibit fast convergence speed and low computational complexity.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献