The Effect of Acetylation on Iron Uptake and Diffusion in Water Saturated Wood Cell Walls and Implications for Decay

Author:

Zelinka Samuel LORCID,Houtman Carl J.ORCID,Hirth Kolby,Lacher Steven,Lorenz Linda,Engelund Thybring EmilORCID,Hunt Christopher G.ORCID

Abstract

Acetylation is widely used as a wood modification process that protects wood from fungal decay. The mechanisms by which acetylation protects wood are not fully understood. With these experiments, we expand upon the literature and test whether previously observed differences in iron uptake by wood were a result of decreased iron binding capacity or slower diffusion. We measured the concentration of iron in 2 mm thick wood sections at 0, 10, and 20% acetylation as a function of time after exposure to iron solutions. The iron was introduced either strongly chelated with oxalate or weakly chelated with acetate. The concentrations of iron and oxalate in solution were chosen to be similar to those found during brown rot decay, while the concentration of iron and acetate matched previous work. The iron content of oxalate-exposed wood increased only slightly and was complete within an hour, suggesting little absorption and fast diffusion, or only slight surface adsorption. The increase in iron concentration from acetate solutions with time was consistent with Fickian diffusion, with a diffusion coefficient on the order of 10−16 m2 s−1. The rather slow diffusion rate was likely due to significant binding of iron within the wood cell wall. The diffusion coefficient did not depend on the acetylation level; however, the capacity for iron absorption from acetate solution was greatly reduced in the acetylated wood, likely due to the loss of OH groups. We explored several hypotheses that might explain why the diffusion rate appears to be independent of the acetylation level and found none of them convincing. Implications for brown rot decay mechanisms and future research are discussed.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3