Abstract
This work proposes a high-throughput implementation of the Otsu automatic image thresholding algorithm on Field Programmable Gate Array (FPGA), aiming to process high-resolution images in real-time. The Otsu method is a widely used global thresholding algorithm to define an optimal threshold between two classes. However, this technique has a high computational cost, making it difficult to use in real-time applications. Thus, this paper proposes a hardware design exploiting parallelization to optimize the system’s processing time. The implementation details and an analysis of the synthesis results concerning the hardware area occupation, throughput, and dynamic power consumption, are presented. Results have shown that the proposed hardware achieved a high speedup compared to similar works in the literature.
Funder
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献